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ON SEARCHING FOR SOLUTIONS 
OF THE DIOPHANTINE EQUATION X3 + y3 + 2Z3 = n 

KENJI KOYAMA 

ABSTRACT. We propose an efficient search algorithm to solve the equation 
X3 + y3 + 2Z3 = n for a fixed value of n > 0. By parametrizing IzI, this 
algorithm obtains lxl and IYI (if they exist) by solving a quadratic equation 
derived from divisors of 21z13 ?n. Thanks to the use of several efficient number- 
theoretic sieves, the new algorithm is much faster on average than previous 
straightforward algorithms. We performed a computer search for six values of 
n below 1000 for which no solution had previously been found. We found three 
new integer solutions for n = 183, 491 and 931 in the range of Izl < 5 107. 

1. INTRODUCTION 

Demjanenko [2, 9] proved that every number n # ?4 (mod 9) can be expressed 
as the sum of four positive or negative cubes: x3 +y3 + Z3 + W3 = n. Recently, Lukes 
[8] found representations of (x, y, z, w) for all n < 107, including n ? ?4 (mod 9). 
Because representations appear to get easier with increasing size of n, it is most 
plausible that all numbers can be represented as the sum of four cubes. 

Guy mentioned two related open problems in a book entitled "Unsolved problems 
in number theory" (Problem D5 in [3, 4]). One problem asks if every number 
# ?4 (mod 9) is the sum of three positive or negative cubes. The other problem 
asks if every number is the sum of four cubes with two of them equal. More exactly, 
does each of the following Diophantine equations have integer solutions: 

(1) x3 +y3 +Z3 =n, 

(2) x3 +y 3 + 2z3 =n, 

where n is a fixed positive integer and x, y and z can be any integers with minus 
signs allowed? There is no known general criterion to check for the existence of 
solutions for equation (1) or (2), although there are still many values of n for which 
no solution has been found. For equation (1), Heath-Brown, Lioen and te Riele 
[5] presented an efficient search algorithm based on the class number of Q(3%i). 

Their algorithm uses the idea of factoring in Q(3 VTh). They performed a computer 
search for six values of n below 50. Koyama, Tsuruoka and Sekigawa [7] proposed 
a one-dimensional quadratic search algorithm for equation (1) by using the idea of 
integer factoring in Z and extending [6]. They performed a computer search for 
51 values of n below 1000 for which no solution had previously been found. They 
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found eight new integer solutions in the range of min(lxl, lyl, lzl) < 2. 107. As a 
result, there are now 43 values of n below 1000 (and # ?4 mod 9) for which no 
solution of equation (1) has been found. 

In this paper, we focus on equation (2). Equation (2) has several parametric 
solutions for the special form of n: 

x =1 +3t3, y= 1-3t3, z=-3t2, n=2; 
x = 3 +3t3, y = A3 -3t3, z=-3At2, n = 2A9; 

x=A, y=A+2,jz=-A-1, n=6A+6. 

In 1994, Guy [4] mentioned that there were 15 values of n below 1000 for which no 
solution of equation (2) had previously been found: 

n = 76, 148, 183, 230, 356, 418,428, 445, 482, 491, 580, 671, 788, 931, 967. 

In an e-mail message from Cohn to Guy [1], Cohn mentioned that he had found 
nine new solutions for n among the above 15 values. His solutions (x, y, z, n) with 
lxl < IyI were 

(-21167, -122171, 97135, 76), 

(-14101, 27293, -20617, 230), 

(129521, 1048469, -832693, 356), 

(15961, 91705, -72914, 418), 

(-111433, -117091, 114332, 428), 

(-19178, 150439, -119321, 445), 

(-2254, -11878, 9449, 482), 

(85111, 89845, -87542, 580), 

and 

(380698, 641263, -542246, 967). 

This left the solutions for six values of n below 1000 to be solved: 

(3) n = 148, 183, 491, 671, 788, 931. 

In this paper, we propose an efficient algorithm for finding all solutions of equa- 
tion (2) in the range of lzl < L for the fixed values of n in the above list (3). This 
algorithm is similar to that in [7] in the sense of a one-dimensional quadratic search 
method that takes O(L2) steps. The proposed algorithm obtains lxl and IYI (if they 
exist) by solving a quadratic equation derived from divisors of 2IzZ3 ?n, where IzI is 
a parameter. Efficiency of this algorithm is improved by several number-theoretic 
sieves and a primality test. We show the results of a computer search that used 
this algorithm. 

2. OUTLINE OF QUADRATIC SEARCH ALGORITHM 

Without loss of generality, we may take 

IXI <IYI. 
The solutions are generally classified into the following three cases: 

Case 0: {x> 0, y > 0, z > 0} or {x <0, y > 0, z > 0}, 
Case 1: {x > 0, y < 0, z > 0} or {x < 0, y < 0, z > 0}, 
Case 2: {x > 0, Y > 0, z < 0} or {x < 0, y > 0, z < 0}. 
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In case 0, the constraint 0 < x3 + y3 + 2z3 < 1000 implies z < 7. Thus, it is easy to 
find all solutions for case 0, even if a three-dimensional exhaustive search is done. 
In order to find all solutions for case 1 and case 2 over a range of values of n, a 
two-dimensional exhaustive search with two parameters, say x and y, was usually 
done. In order to find all solutions for case 1 and case 2 with a fixed value of n, we 
propose a one-dimensional exhaustive search with one parameter z. In case 1, we 
put X = x, Y = -y, Z = z, and A = 2Z3 -n, where Z is assumed so that 2Z3 > n. 
In case 2, we put X = -x, Y = y, Z =-z, and A = 2Z3 + n. Summarizing case 1 
and case 2, we have 

y3 -X3 =A 
(4) A 

where Y > IXI > 0 and A > 0. Equation (4) can be rewritten as a product of two 
divisors: 

(5) (Y - X)(y2 + YX + X2) = A. 

Let C = Y -X and D = y2 +YX ?X2. For given values of Z and n, we compute 
A. By factoring A, we obtain candidates for the pair of divisors C and D such that 
A = CD. By substituting X = Y - C into D = y2 + YX + X2, we get 

(6) y2-CY+ C2D 0. 
3 

Note that (C2 - D)/3 is an integer. The value of Y (> 0) is obtained as one of the 
roots of equation (6) as 

(7) Y = whereQ= 4DC 

From X = Y - C, we have 

(8) X C + 2Q 

Note that Q is a positive integer because 4D 0 C2 (mod 3) and C2 < 4D, which 
inequality is derived as 

02= Y2-2YX?X2 <Y2-2YX X2? (Y? X)2 = 4Y2+4YX+4X = 4D. 

If Q is a square, then Y and X, which are represented by equations (7) and (8), 
become integers because i/Q _ C (mod 2). 

3. THE ALGORITHM WITH NUMBER-THEORETIC SIEVES 

By parametrizing the positive integer Z (= lzl) in the range S < Z < L, our 
search algorithm utilizing several properties for number-theoretic sieves is as follows. 
Hereafter, we write pel N if peI N and pe+l f N. 
Input: n, S, L 

Output: A solution (x, y, z) of x3 + y3 + 2z3 = n with S < lzl < L 
or a message "nonexistence" if there is no solution. 

Step 1. Let Wm and V1/n(n) be the sets of primes satisfying 

Wrn = {pi Ipi =2 (mod3), pi < m}, 

Vmr(n) = {pi Ipi _ 1 (mod3), (n/2)( i-)/3modpi = 1, pi < m}. 
Collect primes Pi ( Wm and pi E Vmr(n), where m = 2L. 

Step 2. Put Z = S. 
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Step 3. Check Z by the values of n mod 7 and n mod 9 by using properties 1 and 
2. 

Property 1. 
* If n 1, 2 (mod 7), then z = 0, 1, 2, -3 (mod 7). 
* If n _ -1 -2 (mod7), then z = 0, -1, -2, 3 (mod7). 
* If n ?3 (mod 7), then z ? ?1, ?2, ?3 (mod 7). 

Property 2. 
* If n 2 (mod9), then zO0, 1 (mod3). 
* If n -2 (mod9), then z--O0 -1 (mod3). 
* If n 3, 4 (mod9), then z _ 1 (mod3). 
* If n -3,-4 (mod 9), then z _-1 (mod 3). 

If Z is appropriate as a solution for case 1, then compute A1 = 2Z3 - n. 
If Z is appropriate as a solution for case 2, then compute A2 = 2Z3 + n. 
If Z is not appropriate for both case 1 and case 2, then go to step 11. 
(A is a representative of A1 and A2, and each case is carried out individ- 
ually from step 4 and step 10.) 

Step 4. If A is a prime and A 1 (mod 3) then go to 11. 
If A is a prime and A 1 (mod 3) 
then put C = 1, D = A. 

if A and C (= 1) satisfy properties 3, 4 and 5, 

Property 3. If n- ?4 (mod 9), then 

C 2Z-k (mod 9) for case 1, 
{ 2Z + k (mod 9) for case 2, 

where k 
n+ (mod 9) ifrn 4 (mod 9), 
n3- (mod 9) if n -4 (mod9). 

Property 4. 
* If A 1 (mod5), then C-1, 2 (mod5). 
* If A -1 (mod 5), then C = ?1 -2 (mod 5). 
* If A 2 (mod5), then C 1, ?2 (mod5). 
* If A -2 (mod 5), then C =-1, ?2 (mod 5). 

Property 5. 
* If A 1 (mod7), then C = 1, 2, -3 (mod7). 
* If A -1 (mod 7), then C = -1, -2, 3 (mod 7). 

then go to step 10. 
else go to step 11. 

else 
Step 5. Put B = 2Z, H = 1, F = 1 and A = A' = A. 

if 3ellA (e > 1), 
then put H = 3h, h = [e], B = LB/3hJ, F = 3e-h, A= A' = A/3e. 

If A is a prime, then go to step 9. 
else 

Step 6. Find prime factors pi E WB of A by a revised trial division: 
Put H' = 1. 
Do while {pi < B and H' W A' (mod 3)} or {p2 < B and H' 
A' (mod 3) } 
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if Pe%ijA (ei > 1), 
then if phi < B, where 

h-_| F1 + (1- (Fe1 mod2)) if ei is odd, 
F 1+(FM1mod2) if eiis even. 

then put H' H' phi, B= B/phiJ, F=F pei-hi, A A/pei 
If A is a prime, then go to step 7. 
else go to step 11. 

else 
enddo 

Step 7. If H' _ A' (mod 3), 
then H = H H'. 
else go to step 11. 

Step 8. If A is a prime, then go to step 9. 
Find prime factors pi E VB (n) of A by a trial division: 
Do while pi < B 
if pei lA (ei > 1), 
then put F =F.p,P A = A/pei. 

If A is a prime, then go to step 9. 
else 
enddo 

Step 9. Let Fj be the jth element among combinations of factors of F. 
Choose candidates of divisors C as Cj HFj satisfying properties 3, 4, 
5, 6 and 7. 

Property 6. C < 2Z if Z > n. 
Property 7. C _ A (mod 6). 

Compute another divisor Dj = A/Cj from each Cj. 
Step 10. If Qj = (4Dj - C2)/3 is a square for the candidate pair (Cj, Dj), then 

compute 

-Ci + VQ yCj + j 
2 Y' 2 

Output (x, y, z) transformed from (X, Y, Z) according to either case 1 or 
case 2. 

Step 11. Put Z = Z + 1. If Z > L then output the message "nonexistence"; 
otherwise, go to step 3. 

Remarks. 1. Step 1 corresponds to a precomputation phase; steps 2 to 11 corre- 
spond to the main phase. Only primes in the union of Wm and V1/r and the prime 
3 can become factors of A. Using these prechosen primes, factoring based on trial 
and division can be more efficiently carried out in the similar way as [7]. 

Step 6 and step 8 are the most time-consuming parts of the algorithm. Since the 
number of primes below fi is about [fl/log fJ] for large fi, step 6 requires at most 
about [Z/ log 2ZJ divisions and step 8 requires at most about (1/3). LZ/ log 2ZJ 
divisions for each value of Z. Thus, the order of this algorithm is O(cL2), but the 
constant term c is very small on average. 

2. Size restriction of C mainly saves time for trial division in the algorithm. 
Since C2 < 4D = 4A/C, we have C < (4A)1/3. When Z > n such that n < 1000, 
Z > 100 000, we have A = 2Z3 ? n 2Z3, and an upper bound of C is obtained as 
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C < (8Z3)1/3 = 2Z. This inequality implies the above Property 6, and it is used in 
steps 1, 6, 8 and 9. Note that a naive bigger upper bound of C for equation (2) is 
VrZ3/2 without property 6. For equation (1), a more restricted upper bound such 
as 0.26X for varying parameter X was obtained in [7]. 

3. Congruence restiction between n and z is also effective for a sieve. For given 
n, the value of z is restricted as Properties 1 and 2, which are slightly different from 
those in [7]. We have proven that no other values of the modulus for n except 7 
and 9 have the sieve effect of excluding some values of z for a solution [10]. 

4. The value of h in step 5 and the values of hi in step 6 are derived from 
the following properties 8 and 9 for equation (2), which are the same as those for 
equation (1) in [7]. 

Property 8. If 3j IA (e > 1), then 3f I IC, 39 1 ID, e = f +g and f> [g1. Moreover, 
if e> 1, thene >2, f? 1 andg> 1. 

Property 9. Let p be a prime with p _ 2 (mod 3). If pellA (e > 1), then pf I IC 
(f > 0), e = f + 2g and f > g, where g is a nonnegative integer. 

Note that the six values of n in the list (3) satisfy n_ ?3, ?4 (mod 9), then 
3t A. 

Remarks. 5. The final value of H in step 6 is a kernel divisor of C, which is always 
a factor of C, i.e., HIC. Note that H A (mod 6). 

6. The first trial division factoring in steps 5 and 6 is carried out for the prime 3 
and primes in WB. At the beginning, an upper bound of searched primes is put as 
B - 2Z. After prime factors p,i of A satisfying pi = 3 or pi 2 (mod 3) are found, 
the upper bound of primes for the trial division factoring is dynamically reduced 
to 

(9) B= 2Zhi 

where 1 < hi < ei. Moreover, during the first trial division by primes in WB, if 
H' -A' (mod 3) for the intermediate value of H', then A has other even (or zero) 
prime factors in WB to satisfy H' _ A' (mod 3) for the final value of H'. Thus, the 
upper bound of primes for the first trial division is further reduced to B, where 
B is defined in (9). 

After step 6, the congruence H' _ A' (mod 3) is checked. The passing ratio 
of this check is about 50% . If the check is successful, the second trial division 
factoring in step 8 is carried out for primes in VB (n), where B is the final upper 
bound of the first trial division factoring. 

7. Property 3 shows congruence restriction of C for special values n _ ?4 
(mod -9). If n- 4 (mod 9) for equation (2), then x _ y _ z -1 (mod 3). If 
a 1 (mod 3), then a3 -3a + 2 _ (a- 1)2(a + 2) _ 0 (mod 27). Thus, when 
n 4 (mod 9), we have n- x3 + y3 + 2z3 = (3x - 2) + (3y - 2) + 2(3z - 2)- 
3(x + y + 2z) -.8 (mod 27), which implies x + y + z = n+8 (mod 9). On the other 
hand, if n- -4 (mod 9), then x- y -z -1 (mod 3). If a --1 (mod 3), then 
a3 -3a-2 _ (a + 1)2(a-2) _ 0 (mod 27). Thus, when n--4 (mod 9), we have 
nx3 y3 + 2z3 _ (3x + 2) + (3y + 2) + 2(3z + 2) _ 3(x + y + 2z) + 8 (mod 27), 
which implies x + y + z = 8 (mod 9). 

8. Properties 4 and 5 of congruence restriction of C were derived from quadratic 
residuacity for equation (2), which are the same as those for equation (1) in [7]. 
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9. In steps 4, 5, 6, and 8, the primality of A or A is checked by a fast Rabin test. 
This introduction of a primality test improves the efficiency by about 20%. 

10. The square root /Q is quickly computed in floating-point arithmetic, and 
the value is rounded to the nearest integer. By squaring this integer, the squareness 
of Q is checked. 

Numerical Example. For n = 183, we found a new solution for case 1. We 
mention the values of the intermediate variables in the algorithm. Let 2 090 532 < 
Z < 2 090 533. When Z = 2 090 532, the information of {n _ 3 (mod 9) and Z _ 0 
(mod 3)} shows that this value of Z is not a solution for both case 1 and case 
2. When Z = 2090533, the information of {n- 1 (mod 7) and Z _-3 (mod 
7)} or {n- 3 (mod 9) and Z _ 1 (mod 3)} shows that this value of Z may be a 
solution for case 1, and it follows that A = 2Z3 -n = 18 272 630 746 578 898 691. 
Note that A is not a prime, A _ 2 (mod 3) and an initial upper bound of searched 
primes is 2 x 2090533 = 4181 066. We apply the trial division factoring of step 
6 with primes pi satisfying pi -2 (mod 3) and pi < 4 181 066. After learning 
that A has the factor 17, the upper bound of primes for the trial and division is 
reduced to L2z = 245 945. For an intermediate value of H', we have H' _ A'- 2 
(mod 3). We confirm that A has no prime factor pi (- 2 (mod 3)) in the range 
17 < pi < 495= L`24594J. Thus, we have H = H' = 17. 

Next, we apply the trial division factoring of step 8 with primes Pi satisfying 
Pi = 1 (mod 3), (183/2)(Pi-1)/3 = 1 (mod pi) and pi < 245945. After learning 
that A has the factor 19081, step 8 ends with L17.9081J = 12 and F = 19081. 
Thus, the candidates for divisor C satisfying A _ C _ 5 (mod 6) are {H, H F} = 

{17, 324377 (= 17 19081)}. For C = 17, Q is not the square of an integer. For 
C = 324377, we have Q = (4D - C2)/3 = 75073542921001, which is the square 
of 8664499. Thus, we can compute X = 4170061 and Y = 4494438. Finally, we 
obtain the solution for n = 183 as (x, y, z) = (4 170 061, -4 494 438, 2 090 533). 

Computer Search. By using the above search algorithm, we performed a com- 
puter search for solutions of equation (2) for the six values of n below 1000 in the 
list (3). Taking into account our computer's power, we put L 5. 107. The CPU- 
time on a DEC Alpha Server 2100 computer (4 processors, 250 MHz) is about one 
month. 

We found three new integer solutions as follows: 

(x, y, z, n) = (4 170 061, -4 494 438, 2 090 533, 183), 

(x, y, z, n) = (13 476 659, 13 584 908, -13 531 000, 491), 

and 
(x, y, z, n) = (-6 942 368, -23 115 371, 18 510 883, 931). 

The remaining three missing values of n below 1000 are 148, 671 and 788. 
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